位操作 - 快速幂
如何实现快速的幂运算? 要求$c = a^b$, 按照朴素算法把a连乘b次的时间复杂度是$O(n)$. 而快速幂能做到$O(\log n)$。把b转换为二进制, 二进制数第i位的权为$2^{i-1}$,就可以把二进制拆分为若干个以2为底的真数, 然后利用幂数的性质,例如用朴素算法求$a^{11}$要求乘11次. 考虑到11的二进制为1011, 如果把$a^{11}$拆分为: $$a^{11} = a^{a_0 2^0 + a_1 2^1 + a_2 2^2 + a_3 2^3} = a^1 a^2 a^8$$ 可以看到每一个因子都是上一个因子的平方,利用$a^2 a^2$求出$a^4$, 同样利用$a^4$的平方求出$a^8$, 每次计算只需要用到上一次计算出来的结果, 所以总的运算次数是4次. 任何一个数b最多能写成长度为$O(\log b)$的二进制, 因此这个算法就是$O(\log n)$. 在程序设计中是根据b的二进制中是否为1来控制是否乘以上一次翻倍的积 不断右移b, 直到b不再有1: 根据当前位的权重(当前b最后一位)是否为1来决定c是否乘以最新的a 把a平方,用于下一位计算 在Java中要考虑极端值INT_MIN // 递归 public double myPow(double x, int n) { if(n==0) return 1; double temp = myPow(x, n/2); if (n % 2 ==0) return temp * temp; else { if(n > 0) return x*temp*temp; else return (temp*temp) / x; } } // 循环 public double myPow(double x, int n) { double ans = 1; if(n < 0){ n = -(n+1); // 处理极端值 x = 1/x; ans *= x; } System....